Results of the ISMIP-HOM: higher-order model intercomparison project

Frank PATTYN – Laura PERICHON Laboratoire de Glaciologie, Université Libre de Bruxelles, Belgium

... and the ISMIP-HOM group

ULB

Fix benchmarks for future modeling attempts and detect eventual weaknesses in numerical approaches of higher-order models

Tests for higher-order models, i.e. models that incorporate further mechanical effects, principally longitudinal stress gradients, or that solve the full Stokes system.

Experiments are accessible for many types of models, i.e. flowline models, 2D planform models, full 3D models.

Experiments are valid for both finite difference (FD) and finite element (FE) models.

What kind of experiments?

6 experiments, all except 1 are diagnostic

Glen-type flow law

Isotherm ice mass

Periodic boundary conditions

1 experiment with time-dependent response for a constant viscosity (linear flow law).

1 experiment with data from Haut Glacier d'Arolla

Model specifications

Calculate horizontal velocity field

- Surface velocity
- Basal velocity

Calculate isotropic pressure at the base

Periodic boundary conditions at lateral boundaries

Resolution independent experiments

- Grid size is not important.
- Use a discretization scheme for which the best possible results are obtained

	Code	Full Stokes	LMLa	L1L2	L1L1	Numerical method
Andy Aschwanden	AAS	х				FE
Alun Hubbard	AHU		x	х		FD
Bert De Smedt	BDS		x			FE
Carlos Martin	CMA	x	x			FE
Dave Pollard	DPO			x		FD
Frank Pattyn	FPA	x	x			FD
Fuyuki Saito	FSA		x			FD
Jesse Johnson	JVJ		x			FD
Birgit Breuer	MBR		x			FD
Thomas Kleiner	MTK		x			FD
Olivier Gagliardini	OGA	x				FE
Richard Hindmarsh	RHI	xx	x			Spectral
Steve Price	SPR	x				FV
Shin Sugiyama	SSU	x				FE
Yuri Konovalov	YKO	x				FD
Laura Perichon	LPE				X	FD

Model types vs experiment

	Full Stokes	LMLa	L1L2	L1L1
Exp. A	5	9		
Exp. B	7	9		
Exp. C	4	4	1	1
Exp. D	6	7	1	1
Exp. E	5	4		
Exp. F	2	5		

ULB

ш

Results

Experiment A

L=10:

Some models missing – a harder to perform excercise: viscosity changes over several orders of magnitude

Discrepancies between models are somewhat larger, but results converge

Experiment B

L=10:

Same remarks as A

Not the same models show discrepancies, but a general agreement

L=5:

Clear distinction in behaviour between HO and FS models

Is also reflected in basal stress field by more pronounced second bump

Experiment C

HHVF, HHVC & HHF

Ice stream flow I: variation in basal friction coefficient

Length scale L = 160, 80, 40, 20, 10, 5 km

ULB F. Pattyn - EGU'07 Vienna

 29-8-2008
 Pag.21

L=10:

More variability between models compared to A and B

DP field distinct for FS models

Experiment D

L=5:

Similar remarks

ULB

0.2

0.4

0.6

-5

-10

-15

-20<u></u>____0

Experiment E

HVC & HVF

Haut Glacier d'Arolla

Input for the model is formed by the longitudinal surface and bedrock profiles

Introduction of a zone with reduced basal friction

Experiment F

HHVF & HHVC

Prognostic experiment

Gaussian perturbation on bed surface

Calculate steady-state surface and velocity fields for different slip ratios: c = 0, 1 and 10

CPU versus degrees of freedom

Prognostic test F

c = 1 Sliding

Conclusions

Experiments A-D (ice flow over bumps – slippery spots) are definitely a benchmark that works well for longer length scales

Smaller length scales give problems, due to high viscosty changes

However, interesting features appear at smaller length scales (L=5): distinction between FS and HO models

Differences between models are not due to numerical approaches (FD, FV, FE, spectral), but either physical approximations or numerical problems/inaccuracies.