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Note

Changes with respect to the previous description of experiments are

shown in bold.

1 Description of prognostic experiments

1.1 Standard experiment – Stnd

The standard experiment is comparable to the MISMIP experiment, but with a
different slope and origin. There are no lateral variations in y. The aim of this
experiment is to verify the model with analytical solutions from Schoof (2007).
The result of the run should give similar results as for the flow line case, since
this is an extruded version of it. The bedrock elevation is defined by a sloping
plane in the flow (x) direction:

b = −100− x (1)

where b (m) is the bedrock elevation (positive above sea level) and x is the
horizontal coordinate in the flow direction (in km). The standard parameters
are similar to those of MISMIP and summarized in Table 1.

The basic value for accumulation rate is ȧ = 0.5, but due to an

error in the model experiment description file v1, experiments are

now carried out for ȧ = 0.5 and 0.3 m a−1, respectively, where the

value of 0.5 is considered the standard value. Sliding is described by a
power law linking basal shear stress τb to sliding velocity ub: τb = C|ub|

m−1ub,
with C and m constant.

1.1.1 Domain size and boundary conditions

The domain is taken rectangular with x (flow direction) stretching from 0 to
800 km and y (transverse direction) from 0 to +50 km (Figure 1) on which the
ice sheet is grown.
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Flow parameter A 10−25 Pa−3 s−1

Seconds per year 3600× 24× 365 s a−1

Gravitational acceleration g 9.8 m s−2

Ice density ρ 900 kg m−3

Water density ρw 1000 kg m−3

Glen index n 3
Specific mass balance ȧ 0.5 / 0.3 m a−1

Sliding rate C 107 Pa m−1/3 s1/3

Sliding coefficient m 1

3

Table 1: MISMIP3D constants.

y

x

sy
m

m
e

tr
ic

 ic
e

 d
iv

id
e

0 800 km

0

50 km

o
ce

a
n

 co
n

ta
ct

Free slip boundary condition

Axis of symmetry (center line of ice stream)

ice !ow direction

Figure 1: MISMIP3D domain.
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Boundary conditions are a symmetric ice divide at x = 0, so that ∂h
∂x = ∂zs

∂x =
0, where h is the ice thickness (m), zs = zb + h is the surface elevation and zb
is the lower boundary of the ice sheet (zb = b when the ice sheet is grounded).
In view of the initial bedrock topography, growing an ice sheet on this domain
automatically guarantees the presence of an ice shelf at the downstream part.
Therefore, at the ocean boundary of the ice shelf (x=800 km), the outward
pressure is partially balanced by the hydrostatic sea water pressure.

Two different lateral boundary conditions are applied. At y=50 km, we have
a free-slip boundary condition, resulting from a plane strain condition. Since we
consider a symmetrical ice stream, a symmetry axis is introduced at y=0 km,
which gives the other lateral boundary condition. Therefore, only half a stream
is simulated which considerably reduces the computer resources.1 Boundary
conditions are graphically depicted in Figure 1.

1.1.2 Stnd run

Starting from the initial setup (or an extrusive version of the flowline case), run
the model under the appropriate boundary conditions and parameter settings
until a steady state is reached. Numerical parameters, such as grid size, time
step and integration period are to be chosen by each modeler, as long as the
results are comprehensive and (as) independent (as possible) of the chosen grid
size and time step. Figure 2 displays the resulting geometry (run here with a
finite-difference shallow-shelf model, with (∆x, ∆y) = 2.5 km).

1.2 Basal sliding perturbation I – P75S

This experiment starts from the geometry obtained from Stnd. A basal sliding
perturbation is introduced, precisely at the grounding line, centered on the axis
of symmetry (at y=0 km). It is therefore important to determine the position of
the grounding line as accurate as possible. The sliding perturbation is defined
by a Gaussian bump, i.e.

C⋆ = C

[

1− a exp

(

−
(x− xb)

2

2x2
c

−
(y − yb)

2

2y2c

)]

(2)

where C⋆ is the perturbed basal sliding coefficient, a=0.75 is the pertur-
bation amplitude (a perturbation of 75%), xb is the precise position of the
grounding line at y=0 km obtained from Stnd, yb = 0 km, xc=150 km, and
yc=10 km. These parameters determine the spatial extension of the Gaussian
perturbation.

Applying this perturbation to the basal sliding function, the model is run
forward in time for 100 years. The perturbation will result in a general grounding
line advance of approximately 20–25 km on the axis of symmetry and a thinning

1The symmetry axis implies that ∂h
∂y

= ∂zs
∂y

= ∂b
∂y

= 0, similar to the ice divide. Models

that have a difficulty to impose a symmetry axis can model the domain from y =-50 to +50 km

and apply a free-slip boundary condition at either side. They then output only half of the ice

sheet.
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Figure 2: MISMIP3D initial setup: result of Stnd.

of the grounded ice sheet. An example of such a grounding line change is given
in Figure 3.

1.3 Basal sliding perturbation II – P10S

Similar as the previous experiment, but with a perturbation amplitude of a=0.10.
The reason for this experiment is that when the grounding line is too curved, as
is the case with P75S, the advance leads to compression. This invalidates the
assumptions used in Schoof (2007).

1.4 Test of reversibility – P75R and P10R

Based on the work by Schoof (2007), we know that for an ice sheet resting on
a linearly sloping bedrock, a perturbation in flow parameters (such as basal
sliding) is reversible. This experiment aims at proving this for the numerical
model solution. Starting from the configuration obtained in the prognostic
experiment P75S/P10S (perturbation after 100 years), remove the perturbation
C⋆ and apply the original C. Let the model run in steady state or at least
long enough so that the grounding line is not moving anymore. The resulting
configuration should be equal to the original setup obtained with Stnd.

1.5 Other tests

Other tests with respect to basal melting and buttressing will follow and will
be described in subsequent versions of this document. Whenever they will be
ready, they will be posted on the website.
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Figure 3: MISMIP3D P75S: plot of initial grounding line corresponding to Stnd

(line) and the grounding line position across the ice stream due to the pertur-
bation after 100 years (crosses). Experiment carried out with Elmer/Ice.

2 Description of diagnostic experiments

The aim of the diagnostic experiment is to directly test the numerical models
approximating the Stokes equations with a high-resolution full Stokes Model
(Elmer/Ice).

2.1 Diagnostic basal sliding perturbation – P75D and P10D

We start from a P75S/P10S solution produced with Elmer/Ice, which does not
necessarily correspond to the perturbed solution produced by any other numer-
ical ice sheet model. How to access the input files is described in Section 3. For
this Elmer/Ice geometry, defined by h, b, and zb, compute the corresponding
velocity field in a diagnostic fashion (no computation of ∂h

∂t ). For the basal
sliding perturbation (Eq. 2), the precise initial grounding line position in this
experiment equals xb = 537078 m. The input files can be downloaded from the
website (Elmer75D.dat and Elmer10D.dat).

3 Input and output files

3.1 Elmer/Ice input file for diagnostic experiment

The Elmer/Ice input file gives enough information on the geometry of the per-
turbation experiment produced with this model. Since results are on an unstruc-
tured grid, each modeler should adapt this geometry to his/her own needs. How-
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Experiment # files

Stnd 2
P75S 2 × 100
P10S 2 × 100
P75R 2 × 100 + 2
P10R 2 × 100 + 2
P75D 2
P10D 2

Table 2: Number of output files per experiment.

ever, for fixed grid models, a simple Matlab script to interpolate the Elmer/Ice
data on a regularly-spaced grid is given in Appendix B.

The input file is an ASCII file containing 5 columns providing the geometry.
The structure is x, y, h, zb (all in m), and MASK (having a value of 1, -1,
0, corresponding to nodes that are grounded, floated or the grounding line,
respectively). The bedrock elevation b can be determined directly from (1).

3.2 Output files

Each experiment will give rise to sets of two output files, one output file cov-
ering the whole domain, similar to the input file described above, and one file
describing parameters along the grounding line. All files are ASCII and either
tabular-limited or space-limited. CSV (Comma Separated Values) or any other
format are not accepted.

With exception of the standard experiment Stnd, which only outputs 2 files,
output files are given every year, i.e. 100 × 2 files. For the reversibility ex-
periment another set of files is added for the steady state case. Diagnostic
experiments also result in one set of two files (see Table 2).

3.2.1 Whole domain output file

The first output file is an ASCII file containing 13 columns, of which only the
first four provide the geometry. The structure is x (1), y (2), h (3), zb (4) (all
in m), MASK (5) (1 for grounded ice, 0 for grounding line, -1 for ice shelf),
vx(b) (6), vy(b) (7), vz(b) (8) (the three components of the basal velocity field,
in m a−1), vx(s) (9), vy(s) (10), vz(s) (11) (the three components of the surface
velocity field, in m a−1),2 ∂zb

∂t (12), ∂zs
∂t (13) (the imbalance rate at the base and

the surface, respectively).

2Vertically integrated models fill up the columns with repeated values of the vertical mean

velocity.
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3.2.2 Grounding line output file

The second output file concerns variables along the grounding line. For mod-
els that interpolate a grounding line position between grid points, all variables
should be mapped (interpolated) onto the grounding line. The output file con-
tains a list of variables corresponding to positions x, y. The file has 11 columns,
i.e., xg (1), yg (2) (the position of the grounding line in m), hg (3), ice thick-
ness at the grounding line, ub (4), vb (5) (horizontal velocity components at the
base), us (6), vs (7) (horizontal velocity components at the surface), and u (8),
v (9) (vertical mean horizontal velocity components).

Columns 10 and 11 should contain the buttressing factor θ (10) and the
tangential traction across the grounding line (11), calculated at the grounding
line. More details on the calculation of these parameters is given in Appendix A.

3.3 File naming

The general format of the output files is an alpha-numeric string of the following
format: NNNxMMMMOOOy.dat, where:

NNN: is a three-letter acronym of the modeler composed of the first letter of
the first name and the first two letters of the last name.

x: the model number (each modeler may have several models to submit)

MMMM: experiment type: Stnd, P75S, P75D, P75R, etc.

OOO: time slice: either a number between 001 and 100 or ‘sst’ for the steady
state output files or the diagnostic experiments.

y: output file type: ‘a’ for the whole domain output file and ‘b’ for the grounding
line file.

3.3.1 Examples

• FPA1P75Dssta.dat: Whole domain output file from Frank Pattyn (model
1) for experiment P75D

• GDU1P10S051b.dat: Grounding line output file from Gael Durand (model
1) for experiment P10S at t=51 years
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A Stresses at the grounding line

It is worth understanding how the different ways of solving the mechanical
equations in the grounding line vertical boundary layer affect the results, and we
request participant to provide sufficient information to relate their calculations
to the Schoof (2007) formula.

The tenth column should contain θ calculated at the grounding line. For
models which explicitly use the Schoof formula within the numerical scheme, we
ask them to report θ as used in their numerical schemes. In the description of the
model they should describe how they compute θ. For formulations which do not
use θ directly in a formula, they should report θ as ratio of the normal stress σnn

across the grounding line to the unbuttressed normal stress 1

4
(1− ρi/ρw) ρigH .

In the eleventh column those who can compute it should present the tan-

gential traction across the grounding line. If it is not computed, insert -9999.
A more complete prescription is given below.

A.1 Explicit boundary layer

Report θ as used in the Schoof (2007) equation (29) in their schemes. Report
tangential traction Σt (see definition below) if they are able to.

A.2 Full Stokes and Blatter/Pattyn

Define a tensor

Σ =

[

2τxx + τyy τxy
τxy τxx + 2τyy

]

and at grounding line report θ and Σt according to

θ = Σn/

(

1

2
(1− ρi/ρw) ρigH

)

Σn = n ·Σn,

Σt = t ·Σn,

where n and t are the normal and tangential vectors in the xy plane.

A.3 Vertically integrated approximations, implicit bound-
ary layer

Define a tensor

Σ =

[

2τxx + τyy τxy
τxy τxx + 2τyy

]

and at grounding line report θ and Σt according to

θ = Σn/

(

1

2
(1− ρi/ρw) ρigH

)

Σn = n ·Σn,

Σt = t ·Σn,
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where n and t are the normal and tangential vectors in the xy plane.

B Matlab script

The Matlab script below interpolates the unstructured Elmer/Ice data on a
regularly spaced grid, defined by (imax, jmax), the number of grid points in y
and x and delta, the grid size.

clear all;

close all;

% Loading data

A=load(’Elmer75D.dat’);

B= sortrows(A,[2 1]);

x0=B(:,1);

y0=B(:,2);

h0=B(:,3);

hb0=B(:,4);

% Interpolation on new grid

imax=21; % grid points in transverse direction

jmax=321; % grid points in flow direction (x)

delta=2500;

Li=(imax-1)*delta; % domain size

Lj=(jmax-1)*delta;

[X,Y] = meshgrid(0:delta:Lj,0:delta:Li);

cnt=0;

for i=1:imax

for j=1:length(B)/imax

cnt=cnt+1;

x(j)=x0(cnt);

y(j)=y0(cnt);

hb1(j)=hb0(cnt);

h1(j)=h0(cnt);

end

for j=1:jmax

h(i,j) = interp1(x,h1,X(i,j));

hb(i,j) = interp1(x,hb1,X(i,j));

end

end
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